

... Paris 1760 ...

"I simply no decision wish that, in a shall be made matter which without all the knowledge so closely concerns the that a little wellbeing of analysis and the human calculation can provide." race,

Daniel Bernoulli's analysis of smallpox

Essai d'une nouvelle analyse de la mortalité causée par la petite vérole & des avantages de l'inoculation pour la prévenir

(An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it)

Logistic ODE precursor of **SEIR model**

$$-ds=rac{sdx}{n}-srac{d\xi}{\xi}-rac{ssdx}{mn\xi}$$

x: time

s: susceptibles

 $\boldsymbol{\xi}$: survivors

1/n, 1/m: rate constants

presented at
The Royal Academy of Sciences in Paris
on 16 April 1760

published in

Histoire et Mémoires de l'Academie Royale des Sciences de Paris, 1766 pp. 1-45

... March 2020 ...

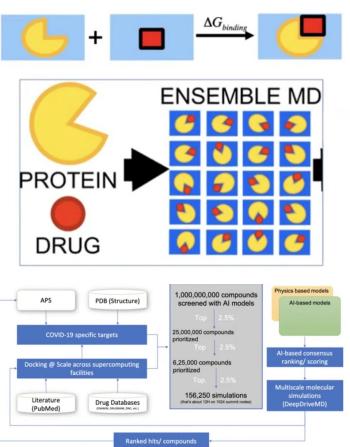
- COVID19 HPC Consortium established by DOE, NSF, industry, and academia in the US
- COVID19 Fast Track established by PRACE in the EU

... April 2020 ...

 Fugaku brought into service a year early by RIKEN and MEXT in Japan expressly to fight COVID19

... June 2020 ...

ISC 2020 DIGITAL AGENDA, JUNE 22 – 25


Focus Session	Covid 19 & HPC/AI -	
Japan and Fugaku's Fight Against the COVID-19 in HPC		*
shi Matsuoka		
Supercomputing, COVID-19 and the Transformation of Medicine		*
r Coveney		
Overview of HPC and Al Computing for COVID-19 in the US		*
Stevens		
	aku's Fight Against shi Matsuoka ng, COVID-19 and th r Coveney	gaku's Fight Against the COVID-19 in HPC shi Matsuoka ng, COVID-19 and the Transformation of Medicine r Coveney PC and AI Computing for COVID-19 in the US

... June 2020 ...

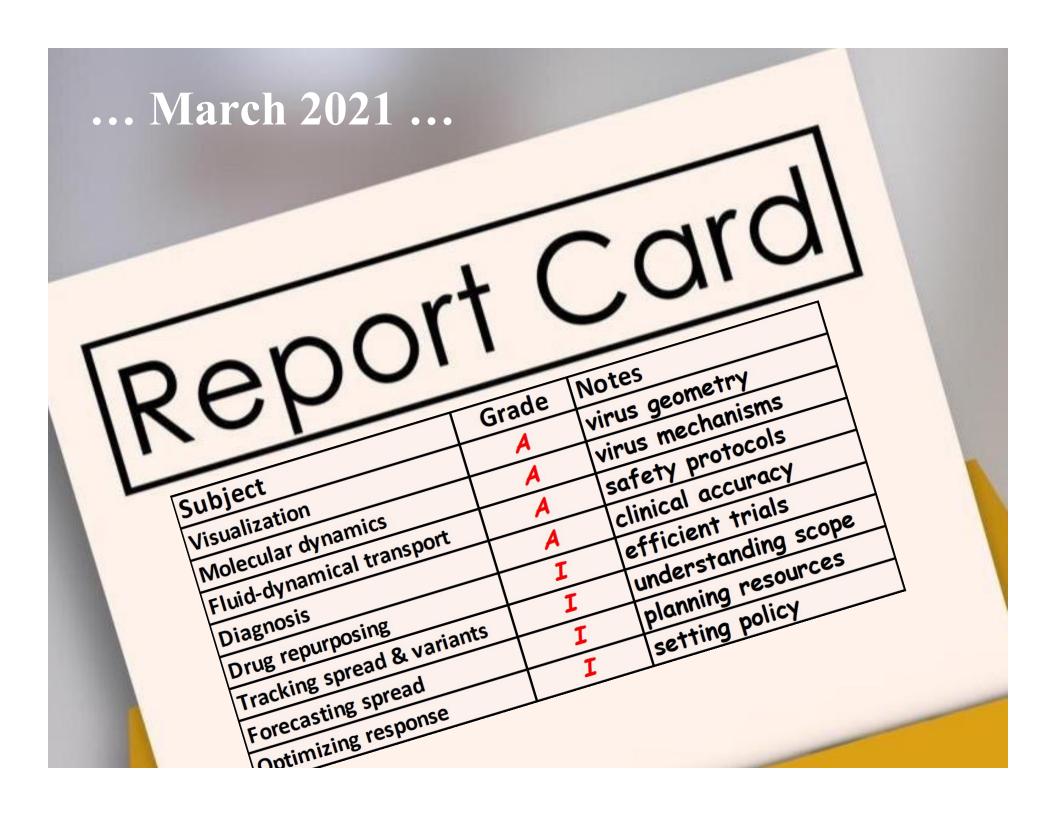
Train Cabin Train running 80km/h with/without four side windows opening/closing by solving air flows of both inside and outside the train. Time for changing the inside air drastically decreased by four to five times by opening the windows.

HPC

... June 2020 ...

"COVID19 has had considerable positive impact on CSE research but not *vice versa*."

"COVID19 understanding and mitigation is still essentially a wet lab and clinical story."


"Where has CSE had an impact beyond research frontiers – in policy support, diagnosis, or therapy?"

... September 2020 ... *

"Recent results highlight the importance of computational science as a guiding tool that helps in uncovering the structure and mechanics of the viral spread as well as drastically reduces the number of candidate treatments that need laborious laboratory testing. From transformative medical advances to drug discovery driven by massively parallel supercomputing, this minisymposium will span a

range of practical approaches to the ongoing crisis."

*from the abstract of SIAM CSE minisymposium

Summary (1): CSE has been good for COVID19

- Allowed scientists to visualize hundred million-atom biomolecular clusters in far greater detail than any laboratory imaging system
- Allowed scientists to understand the ACE2 "attack" configuration of the spike protein with its glycan "kickstand" supports
- Allowed health & safety experts to understand convective and diffusive transport of the virus in rooms and passenger vehicles
- Gave clinicians new AI-assisted CT scan interpretation
- Identified hundreds of potential new drugs computationally and launched dozens into experimental pipelines and clinical trials
- Created computational infrastructure and workflows relevant to future pandemics
- Enabled public policy makers to smartly dial the balance between losing lives and suspending livelihoods

Summary (2): COVID19 has been good for CSE

- Pushed #1-ranked system into broad use a year ahead of schedule
- Created new intercontinental HPC consortia
- Led to sharing of data on unprecedented scale
- Created new computer-to-laboratory pipelines
- Focused new attention on the role of preprint archives
- Accelerated injection of AI into scientific and clinical workflows
- Accelerated development of new algorithms in MD
- Accelerated development of new models in epidemiology, population-stratified beyond the classical S-E-I-R, and Bayesian methods in their parameter fitting
- Brought billions of readers and viewers to the precipice of computational modeling and machine learning, "looking in" from popular media accounts; has inspired future scientists

Launched a new Gordon Bell Prize (2021 entries)

- Digital Transformation of Droplet/Aerosol Infection Risk Assessment Realized on Fugaku for the Fight against COVID-19
- Language Models for the Prediction of SARS-CoV-2 Inhibitors
- Data-Driven Scalable Pipeline Using National Agent-Based
 Models for Real-Time Pandemic Response and Decision Support
- AI-Enabled Multiscale Computational Microscopy of Delta SARS-CoV-2 in a Respiratory Aerosol
- FEP-Based Large-Scale Virtual Screening for Effective Drug Discovery against COVID-19
- Intelligent Resolution: Integrating Cryo-EM with AI-Driven Multi-Resolution Simulations to Observe the SARS-CoV-2 Replication-Transcription Machinery in Action

Molecular Dynamics (R. Amaro, UCSD)

Al-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2 Spike Dynamics

Lorenzo Casalino^{1†}, Abigail Dommer^{1†}, Zied Gaieb^{1†}, Emily P. Parito¹, Tybe Sztain¹, Surl-Hee Ahn¹, Anda Trifan^{2,3}, Alexander Brace², Antiony Bytet (⁴) Hung state, Hyungro Lee⁵, Matteo Turilli⁵, Syma Khalid⁶, Lillian Chana¹, Callos filty eding¹, David J. Hardy³, Julio C. Maia³, James C. Phillips³, Tho yteh Purt (⁸), Ibraham Stern⁸, Lei Huang⁹, John (P. al) in (), Iahidhar Tatineni¹⁰, Tan Giobs⁸ John E. Sone³, Shantenu Jha⁵, Arvind Ramanathan (*), Rome E. Amaro^{1*} ¹University of Ulifornia Conditions Diego, ²Argonne National Lab, ³University (1) Il fois at Ulana-Champaign, ⁴University of Pittsburgh, ⁵Rutgers University & Brookhaven National Lab, ³University of San Diego Supercomputing Center, ⁸NVIDIA Corporation, ³Texas Advance Wang til greenter, ¹⁰San Diego Supercomputing Center, [†]Joir Staythar, Cottact authors: ramaro@ucsd.edu, ramanathana@anl.gov

ABSTRACT

We develop a generalizable AI-driven workflow that leverages heterogeneous HPC resources to explore the time-dependent dynamics

'20: International Conference for High Performance Computing, Networking, Storage, and Analysis. ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI

- Scientific merits: investigation of SARS-CoV-2 spike protein mechanism
 - Elludicate invisible mechanisms, including glycan shield and glycan modulating role
 - Classical explicit Molecular Dynamics on 305M-atom viral envelope (up to 4.2 μs)
- Infrastructure merits: efficiencies applied at new scales on several large systems
 - Algorithmic: weighted ensemble strategy in MD efficiently kill uninteresting trajectories using ML over many short parallel sims parallel, vs. one long serial sim
 - Software: wide portability across new architectures (CHARM36, NAMD2.14)

Molecular Dynamics (R. Amaro et al.)

"Computational microscopy"

- 1. Spike protein of 600K atoms an order of magnitude larger than previous (100TB per sim)
- 2. Composite system to view "handshake" has 8.5M atoms with explicit water
- 3. Full protein envelope has 305M atoms

Linked in AI-driven workflow

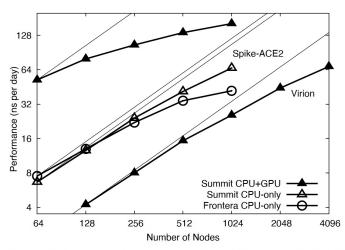
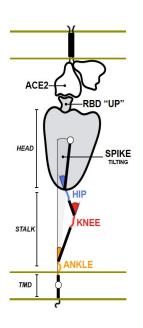
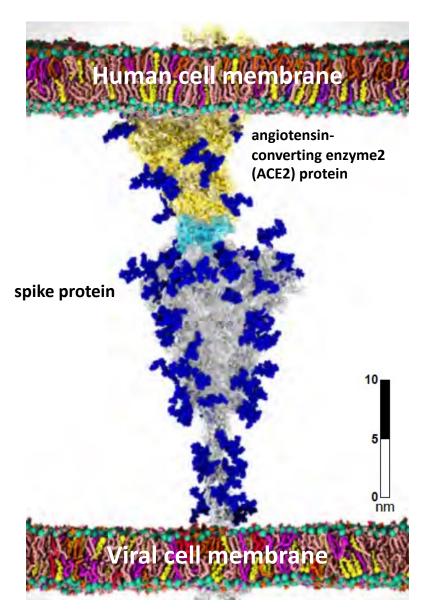




Figure 4: NAMD scaling on Summit and Frontera for 8.5Matom spike-ACE2 complex (upper lines) and 305M-atom virion (lower line). Thin lines indicate linear scaling.

Aerosol Dynamics (M. Tsubokura et al.)

DIGITAL TRANSFORMATION OF DROPLET/AEROSOL INFECTION RISK ASSESSMENT REALIZED ON "FUGAKU" FOR THE FIGHT AGAINST COVID-19

RIKEN enter Computational Science, Japan zuto.ando@riken.jp

RIKEN Center for Conjutational Science, Japan Kobe University, Japan chung-gang.li@a.riken.jp

Keiji Onishi*

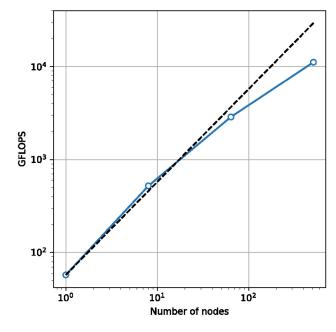
RIKEN Center for Computational Science, Japan keiji.onishi@riken.jp

RIKE Oner for impatational Science, Japan rahul.bale@riken.jp

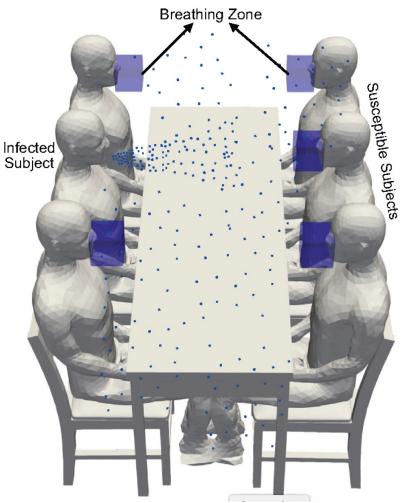
Satoshi Matsuoka*

RIKEN Center for Computational Science, Japan Tokyo Institute of Technology, Japan satoshi.matsuoka@riken.jp

Makoto Tsubokura*


RIKEN Center for Computational Science, Japan Kobe University, Japan mtsubo@riken.jp

Aerosol Dynamics (M. Tsubokura et al.)


"Computational social policy"

- 1. 1000's of societal interations evaluated
- 2. Ill-suited for experiments
- 3. Pivoted from high fidelity droplet simulations in other fields, e.g., spray ignition

Created new expectations for HPC simulations within entire society

AI is a vital part of the mix

- Allowed MD modelers to "fast forward" over uninteresting stretches of dynamics and to stitch together models at different scales
- Allowed expensive simulation kernels to be replaced with inexpensive input-output functional maps, leading to improved throughput
- Improved on human accuracy, shrinking both false positives and false negatives in clinical tests
- Allowed "most likely" drug candidates to be identified out of billions of compounds after being trained on a small sample of the compounds for their ability to dock on human cell receptors

Summary (3): COVID19 has been good for CSE @

"The pandemic hibernation has made the engine lab useless and thus many of my students have converted to simulations. That has more than doubled the use of high-CPU simulations. I do not see this change back to more experiments any time soon..."

a combustion colleague

